http://wso2.com/

WS

Stratos 2.0 Architecture Guide

Date: 5 April 2013

Email: support@wso2.com

© 2013 WSO2

WSO0O2 Stratos 2.0
Architecture Guide

Contents

Contents
Introduction
Stratos 2.0 Foundation
Elastic Load Balancer(ELB)

Auto Scaling Decision Maker

Where does this autoscale decision making task reside?
What is the basis for autoscaling?

What are the decision making variables?

How is the number of requests in-flight gets calculated?

What are the decision making functions?
Scaling up
Scaling down
Can I plug my own implementation?
Artifact Distribution Coordinator (ADC)
Cloud Controller
What is Cloud Controller?

Service Interface of Cloud Controller?

What are the configuration files used by Cloud Controller and where are they reside?

How does the architecture look like?*

https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.vsd19a5fe0n8
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.wnmbl1tfmy5s
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.g9iyugw6gi7o
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.3x0pb3soqk53
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.lqn0otxsezdh
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.ahw7bgskjgf8
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.v8qfqnspmb4o
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.rjsu4mhht7r6
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.4nig3i8sd104
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.dwo6kcpqqbr5
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.wc8fi6w9nnlw
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.bkp4nn2em0ya
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.5jw9xqfkcswj
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.p22hhbyc5m05
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.6iobbg3mo7fr
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.10ag794ycn7w
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.2lbosmqnh0rh
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.vk3i07w5ho1g
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.1fo41hdtkulm

Cloud Controller Service

Cloud Controller Deployer

Service Deployer

Axiom Xpath Parser

Topology Publisher

How does the topology get built?
BAM Data Publisher

IaaS Implementation Layer

iclouds
Does Cloud Controller supports hot update and hot deployment of its configuration files?
What [aaS providers you support by default?
Can it support [aaS providers other than ones supported by Jclouds?

How easy it is to provide support for a new laaS provider?

Cartridges
Single-Tenant cartridges

Multi-Tenant cartridges
Puppet based WSO2 Carbon Cartridges
User Roles

Cartridge Developer

Cartridge Deployer
Cartridge Subscriber
Cartridge Users

Cartridge Agent

Loggin

Health Monitoring

Stratos 2.0 System Level Health Monitoring
Nagios
Active and passive checks

Status Publisher

Visualization
User Stories

Custom Domain Mapping
Security for Cartridge Applications

© 2013 WSO2

https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.5dq6irx2c9wa
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.sbylpst9guyt
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.sen9l33zyyf2
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.eogyy75gvrel
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.t30u1d3ij6t4
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.ci62rkw036it
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.mfbyyy3yglv1
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.5jks7k37kdt9
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.ro0knu41y613
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.v7vm158m0udl
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.sbizcs2qd7d3
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.csgfv7n6ldu5
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.u2y8fmstz22z
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.tl1bfo6x146k
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.ci1dl0oxnhq0
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.ujpjvt4eb5w5
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.d362dkrdi8ny
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.gggetkq1zyhj
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.ugvtg87tkign
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.rjy1unoi76q5
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.de16g33923q
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.qkfy7l7ywpff
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.b4hkfcz10z5u
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.m199e258rn45
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.84ycefn23m0n
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.u012i01enhi2
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.wf6bpdkx9keg
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.t0qxv6o7f09f
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.xqphnncccksl
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.qo26lebinpdc
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.q1fekh4w028a
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.4dyoz3sdz3qe
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.v5xsdgxjevkn

Stratos 2.0

Usage Scenarios
Scenario 1: WSO2 Public PaaS

Scenario 2: Private PaaS

Annex

Properties defined in the defaults section.

Properties defined within the service element

{WSO2-CC}/repository/conf/etc/cartridge.xsd

{WSO02-CC}/repository/cont/etc/cartridges.xsd

{WS0O2-CC}/repository/conf/etc/service.xsd

{WSO2-CC!}/repository/conf/etc/services.xsd

Sample Topology Configuration
laas Abstract Class

References

© 2013 WSO2

https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.67qjzs5g55jq
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.to47lpmd28ih
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.2st97r6iti8u
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.va7hxtx0wasc
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.xw7wx73jldh9
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.dalaj0dm6jid
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.8vy36slb0o62
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.fr1zhccfxxn6
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.pw3bxudgh2gk
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.7ijxi0v29j8w
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.8ok6jbiu6lie
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.ne5vycd39y0e
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.82xs1ip2yqob
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.y3mpedwmljkj

Introduction

Stratos 2.0 is the next generation of WSO?2 Stratos platform. At a glance Stratos 2.0 is

e A Public / Private PaaS provider.

e A Multi-tenant WSO2 middleware products pluggable as cartridges. Eg. WSO2 AS, WSO2
ESB, WSO2 BPS.

e Bring non-cloud middleware services and containers into the Cloud platform as single-tenant
cartridges. Eg. PHP, Jetty.

e Includes core Stratos services such as Identity, Billing/Metering, Logging, Domain Mapping,
Load balancing, Auto scaling etc.

The aim of this document is to provide some insight into Stratos2 architecture. It is not meant as an
instructional document on Stratos2 installation or deployment. For such instructions please refer to
Stratos2 Installation Guide, Stratos2 Cartridge Development Guide and Stratos User Guide
shipped along with this document.

The architecture of Stratos2 is well designed to face current challenges of Cloud PaaS space. What
make Stratos2 architecture unique from its predecessors is the Cartridge concept. A Cartridge is the
core functional component of Stratos 2.0 which is pluggable. A Cartridge component can take use of
core services provided by WSO2 Stratos 2.0 (e.g. auto-scaling, load-balancing, health monitoring,
metering, billing, tenant provisioning, code deployment, identity management, and entitlement), to build a
platform in which tenants can deploy their applications. In a summary Stratos 2.0 Cartridge is a
Cloud-aware platform environment, which extends legacy technologies into the Cloud and
deliver Cloud benefits.

http://www.google.com/url?q=http%3A%2F%2Fwso2.com%2Fcloud%2Fstratos%2F&sa=D&sntz=1&usg=AFQjCNEmpvKd78WC4_LrMFLmhLCnBSa-PQ
http://www.google.com/url?q=http%3A%2F%2Fwso2.com%2Fcloud%2Fstratos%2F&sa=D&sntz=1&usg=AFQjCNEmpvKd78WC4_LrMFLmhLCnBSa-PQ

Stratos 2.0 Layered Architecture

(%]

2 Carbon Carbon Other PHP MySOL Any

= ESB AppServer Carbon Cartridae Cartridge Pluggahle

= Cartridge Cartridge Cartridges g g Cartridge

o

Ifl.le_ . ":."?'F”T"f Identity Lf:”;“;”r‘”;' egistry |/ Messaging Billing Fel-.atl»:'nal T?G.k n

Storage Storage Senice Senice anvice Data Management
~,|—-| ||,|- _,n-| |1 =] 5 »—I]| e 5 J :‘:1 ' ~.>—-| || =]

Stratos
Foundation

(Elastic Load Balancer)(Cloud Controller)(Stratos Controller)(CLI Webl| Tool)
(jclouds)

Infrastructure as a Semvice (EC2, OpenStack, vCloud, etc.)

laas

[onine diagramming & design] Createl .3'I com

figure 1 - Stratos 2.0 Layered Architecture

Cartridges may wrap traditional, non-Cloud-aware application platform containers extending the
traditional technology to the Cloud and provides elastic scalability, resource pooling, on-demand
self-service, and consumption pricing. For example, WSO2 Stratos 2.0 ships with cartridges for PHP

and MYSQL.

Stratos Operations teams may create custom cartridge types and host any application, container, or
framework in a Stratos 2.0 Cloud. For example, a team may create a custom cartridge type to bring
cloud characteristics to IBM Websphere Application Server, IBM WebSphere ESB, Oracle

WebLogic, or JBoss SOA Platform.

Strotos 2.0 Logical Architecture

Elastic Load 8 Join ELB Catridge
Balancer Agent
4 Topology sync
5.Auto scale request 7.Join
me
ElEi laas Provider
Controller 6. Spawn instance TE e
3.Subscribe
11 Pull request 12. Pull
Strtos Controller SLIEAEE
i Code
Artifact Dgployment 10. Trigger an event :
coodinator Repository
2. Subscribe details 9. Git push
(j 1. List cartridges/ Cartridge
Subscribe users

figure 2 - Stratos 2.0 Logical Architecture

Stratos 2.0 Foundation

Stratos 2.0 foundation layer, as the name suggests, build a strong foundation layer for a Cloud PaaS. It

consists of some core components mandatory for any Stratos 2.0 cloud deployment.

Elastic Load Balancer(ELB)

o Load monitor
m Probably co-located with ELB to start
m Receive load events from various places (e.g. ELB)
m Sends requests for load up/down to Cloud Controller

o Make autoscaling decisions

o Accept dynamic cluster domain registrations

o Accept static cluster domain registrations at startup reading loadbalancer.conf

Auto Scaling Decision Maker

Where does this autoscale decision making task reside?

The ‘autoscaling decision making’ task currently resides in WSO2 Elastic Load Balancer. Default
implementation is

org.wso2.carbon.mediator.autoscale.lbautoscale.task.ServiceRequestsInFlightAutoscaler

What is the basis for autoscaling?

Current default implementation (ServiceRequestsInFlightAutoscaler) considers number of requests
in-flight as the basis for making autoscaling decisions. We follow the paradigm; “scale up early and scale
down slowly” in the default algorithm.

What are the decision making variables?

There are few of them and all of the vital ones are configurable using loadbalancer.conf file. (sample
configuration files are provided at the end of this document _[a][b].)

1. autoscaler_task_interval (t) - time period between two iterations of ‘autoscaling decision
making’ task. When configuring this value, you are advised to consider the time ‘that a service
instance takes to join ELB’. This is in milliseconds and the default value is 30000ms.

2. max_requests_per_second (Rps) - number of requests, a service instance can withstand per
a second. It is recommended that you calibrate this value for each service instance and may also
for different scenarios. Ideal way to estimate this value could be by load testing a similar service
instance. Default value is 100.

3. rounds_to_average (r) - an autoscaling decision will be made only after this much of iterations
of ‘autoscaling decision making’ task. Default value is 10.

https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.kc6q4s7xm93r
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.wuj2a7q50x9t

4. alarming upper_rate (AUR) - without waiting till the service instance reach its maximum
request capacity (alarming_upper rate = 1), we scale the system up when it reaches the request
capacity, corresponds to alarming upper rate. This value should be 0<AUR<=1 and default is
0.7.

5. alarming lower rate (ALR) - lower bound of the alarming rate, which gives us a hint; that we
can think of scaling down the system. This value should be 0O<ALR<=1 and default is 0.2.

6. scale_down_factor (SDF) - this factor is needed in order to make the scaling down process
slow. We need to scale down slowly to reduce scaling down due to a false-positive event. This
value should be 0<SDF<=1 and default is 0.25.

How is the number of requests in-flight gets calculated?

We keep track of the requests that come to Elastic Load Balancer (ELB) for various service clusters.
For each incoming request, we add a token, against the relevant service cluster and when the message

left ELB or got expired, we remove the corresponding token.

What are the decision making functions?

We always respect the minimum number of instances value and maximum number of instances value of
service clusters. We make sure that the system always maintains the minimum number of service

instance requirement and also system will not scale beyond its limit.

We calculate,

average requests in-flight for a particular service cluster (avg) =
total number of requests in-flight * (1/r)

Scaling up

number of maximum requests that a service instance can withstand over an autoscaler task interval (maxRpt) =
(Rps) * (t/1000) * (AUR)

then, we decide to scale up, if,

avg > maxRpt * (number of running instances of this service cluster)

Scaling down
imaginary lower bound value (minRpt) = (Rps) * (t/1000) * (ALR) * (SDF)
then, we decide to scale down, if,

avg < minRpt * (number of running instances of this service cluster - 1)

Can I plug my own implementation?

You can write your own Java implementation which implements

org.apache.synapse.task.Task and org.apache.synapse.ManagedLifecycle interfaces. Wrap the
implementation class to an OSGi bundle and deploy in WSO2 ELB. Then, point to that class from the
{ELB_HOME}/repository/conf/loadbalancer.conf file’s loadbalancer section as follows.

loadbalancer {

autoscaling decision making task
autoscaler task org.wso2.carbon.mediator.autoscale.lbautoscale.task.ServiceRequestsInFlightAutoscaler;

Artifact Distribution Coordinator (ADC)

ADC (Embedded into Stratos Controller from Beta onwards) is responsible for distribution of Artifact.
Artifacts can upload using git push. ADC a has listener service. The user configured Git repositories
with Stratos 2.0 ADC can be pre configured to trigger notify above service in every git push. Github
repositories can use WebHook URL to set this notifier. When a trigger event happens ADC lookup for

topology and send notifications to appropriate cartridge instances. For carbon cartridges it will send

DepSync cluster message notifications. Then instances do git pull and updates their artifacts.

Artifact Distribution Coordinator Functioanlity
laaS
| Cartridge | | Cartridge | [cartridge |
. Instance 1 || Instance 2 /| Instance 3 |
j-v Pull 4. DepSync Cluster Message

Git .
Repository 2. Trigger an Event ADC
1. Push Artifact

ush Artirac User 3. Topology Lookup

figure 3 - ADC Functionality Architecture

Cloud Controller

What is Cloud Controller?

Cloud Controller plays a vital role in Stratos 2.0 and given below is a list of its capabilities and duties.
WSO02 Cloud Controller,

e is acting as a bridge between application level and Infrastructure as a Service (IaaS) level via

Jclouds APL

enables your system to scale across multiple IaaS providers.

is the central location where the service topology resides.

is responsible for sharing the up-to-date service topology among other Stratos 2.0 core
services, periodically.

supports hot update and deployment of its configuration files.

has inbuilt support for AWS EC2 IaaS provider, Openstack Nova [aaS provider and latestly
VMWare vCloud provider as well.

enables you to cloud burst your system across multiple laaS providers.

allows you to plug an implementation of any IaaS provider supports by Jclouds, very easily.
enables you to spawn new service instances, while associating a public IP automatically, in
order to reduce the instance boot-up time.

enables you to terminate an already started instance of a particular service cluster.

can be configured to cover many scenarios, using its well-thought-out configuration files.

Service Interface of Cloud Controller?

WSO2

/**

CC exposes a service which has the following interface.

* Registers the details of a newly created service cluster. This will override an already
* present service cluster, if there is any. A service cluster is uniquely identified by its

* domain and sub domain combination.

*

* @param domain

* service cluster domain

* @param subDomain

* service cluster sub domain

* @param tenantRange

* tenant range eg: '1-10' or '2'

* @param cartridgeType

* cartridge type of the new service. This should be an already registered cartridge
* type.

* @param hostName

* host name of this service instance

* @param payload

* payload which will be passed to instance to be started. Payload shouldn't contain
* xml tags.

* @return whether the registration is successful or not.

http://www.google.com/url?q=http%3A%2F%2Fwww.jclouds.org%2F&sa=D&sntz=1&usg=AFQjCNHCZyWiOD0jkdwvGvfVAm-MFD5NxQ

*

* @throws UnregisteredCartridgeException

* when the cartridge type requested by this service is

* not a registered one.

* @throws CloudControllerException

* when the operation fails for internal reason.

*/

public boolean registerService(String domain, String subDomain, String tenantRange, String
cartridgeType,

String hostName, byte[] payload) throws UnregisteredCartridgeException,

CloudControllerException;

/**

* Calling this method will result in an instance startup, which is belong

* to the provided service domain. This method is non-blocking, means we do not

* wait till the instance is started up. Also note that the instance that is starting up

* belongs to the group whose name is derived from its service domain, replacing <i>.</i>
* by a hyphen (<i>-</i>).

%

* @param domainName

* service clustering domain of the instance to be started up.

* @param sudDomainName

* service clustering sub domain of the instance to be started up.
* If this is null, the default value will be used. Default value is

* {@link Constants}.DEFAULT_SUB_DOMAIN.

* @return public [P which is associated with the newly started instance.
*/

public String startInstance(String domainName, String sudDomainName);

/**

* Calling this method will result in termination of an instance which is belong
* to the provided service domain and sub domain.

%

* @param domainName

* service domain of the instance to be terminated.

* @param sudDomainName

* service clustering sub domain of the instance to be started up.
* If this is null, the default value will be used. Default value is

* {@link Constants}.DEFAULT_SUB_DOMAIN.

* @return whether an instance terminated successfully or not.

*/

public boolean terminatelnstance(String domainName, String subDomainName);

/**

* Calling this method will result in termination of the lastly spawned instance which is
* belong to the provided service domain and sub domain.

*

* @param domainName

* service domain of the instance to be terminated.

* @param sudDomainName

* service clustering sub domain of the instance to be started up.

* If this is null, the default value will be used. Default value is

* {@link Constants}.DEFAULT_SUB_DOMAIN.

* @return whether the termination is successful or not.

*/

public boolean terminateLastlySpawnedInstance(String domainName, String
subDomainName);

/**

* Calling this method will result in termination of all instances belong
* to the provided service domain and sub domain.

%

* @param domainName

* service domain of the instance to be terminated.

* @param sudDomainName

* service clustering sub domain of the instance to be started up.
* If this is null, the default value will be used. Default value is

* {@link Constants}.DEFAULT_SUB_DOMAIN.

* @return whether an instance terminated successfully or not.

*/

public boolean terminateAlllnstances(String domainName, String subDomainName);

/**

* Calling this method will result in returning the pending instances
* count of a particular domain.

%

* @param domainName

* service domain

* @param sudDomainName

* service clustering sub domain of the instance to be started up.

* If this is null, the default value will be used. Default value is

* {@link Constants}.DEFAULT_SUB_DOMAIN.

* @return number of pending instances for this domain. If no instances of this
* domain is present, this will return zero.

*/

public int getPendingInstanceCount(String domainName, String subDomainName);

/**
* Calling this method will result in returning the types of {@link Cartridge}s
* registered in Cloud Controller.

*

* @return String array containing types of registered {@link Cartridge}s.
*/
public String[] getRegisteredCartridges();

/**

* This method will return the information regarding the given cartridge, if present.

* Else this will return <code>null</code>.

*

* @param cartridgeType

* type of the cartridge.

* @return {@link Cartridgelnfo} of the given cartridge type or <code>null</code>.

* @throws UnregisteredCartridgeException if there is no registered cartridge with this type.

*/

public Cartridgelnfo getCartridgelnfo(String cartridgeType) throws
UnregisteredCartridgeException;

/**
* Creates a key pair in all laaSes that are configured for the given cartridge,

* having the given name and public key.

*
*<p/>

* <h4>Supported Formats</h4>

*

* OpenSSH public key format (e.g., the format in ~/.ssh/authorized_keys)

* Base64 encoded DER format

* <]i>SSH public key file format as specified in RFC4716

*

* DSA keys are not supported. Make sure your key generator is set up to create RSA keys.
*<p/>

* Supported lengths: 1024, 2048, and 4096.

*<p/>

*

* @param cartridgeType

* type of the cartridge. Note this cartridge type should be already

* registered one.

* @param keyPairName

* name of the key pair which is going to get created in laaSes.

* @param publicKey

*

The public key.

*

*/

public boolean createKeyPairFromPublicKey(String cartridgeType, String keyPairName,
String publicKey);

What are the configuration files used by Cloud Controller and where are they reside?

In a fresh Cloud Controller pack, you have only the main configuration file which is named as
“cloud-controller.xml” and resides in ${WSQO2-CC}/repository/conf/. This file mainly consists 3
parts.

1. BAM data publisher section
This section contains the information related to BAM data publisher of Cloud Controller, such as
BAM server information, data publishing task interval etc. You can disable BAM data publisher by
setting enable attribute to false.

<dataPublisher enable="true">
<!-- BAM Server Info - default values are 'admin' and 'admin’
Optional element. -->
<bamServer>
<!-- BAM server URL should be specified in carbon.xml -->
<adminUserName>admin</adminUserName>
<adminPassword
svns:secretAlias="cloud.controller.bam.server.admin.password">admin</adminPassword>
</bamServer>
<!-- Default cron expression is '1 * * * * ? *' meaning 'first second of every minute'.
Optional element. -->
<cron>1****7?7*</cron>
</dataPublisher>

2. Topology sync section
This section contains the information related to topology synchronization, mainly WSO2 Message
Broker server information.

<topologySync enable="true">
<!-- MB server info -->
<mbServerUrl>localhost:5673</mbServerUrl>
<cron>1****7*</cron>

</topologySync>

3. IaaS providers section
Here, you can define the information of IaaS providers, that may or not dependent on the
different service clusters. This section is provided to make our users’ lives easy. If they want they can
remove this section, but we recommend you to utilize this feature.

<!-- Specify the properties that are common to an IaaS here. This element
is not necessary [0..1]. But you can use this section to avoid specifying
same property over and over again. -->
<iaasProviders>
<!-- type attribute is a must and should be unique. name attribute is optional, and you can add
any string value -->
<iaasProvider type="ec2" name="ec2 specific details">
<!-- full qualified name of the IaaS implementation -->
<className>org.wso2.carbon.stratos.cloud.controller.iaases. AWSEC2Ilaas</className>
<!-- provider string -->
<provider>aws-ec2</provider>
<!-- identity and credentials of your IaaS account. We use secure vault here. If we
cannot find a value via secure vault, we will look for the text value of this element. -->
<identity svns:secretAlias="cloud.controller.ec2.identity"></identity>
<credential svns:secretAlias="cloud.controller.ec2.credential"></credential>
<!-- these orders will be used when scaling up and down instances. 1 has the highest
precedence -->
<scaleUpOrder>1</scaleUpOrder>
<scaleDownOrder>2</scaleDownOrder>
<!-- you can define any required property here. -->
<property name="jclouds.ec2.ami-query"
value="owner-id=XXXX-XXX;state=available;image-type=machine" />
<property name="availabilityZone" value="us-east-1c" />
<property name="securityGroups" value="default"/>
<property name="instanceType" value="m1.large" />
<property name="keyPair" value="nirmal-key" />
<imageld>us-east-1/ami-XXXXX</imageld>
</iaasProvider>
<iaasProvider type="openstack" name="openstack specific details">
<className>org.wso2.carbon.stratos.cloud.controller.iaases.OpenstackNovalaas</className>
<provider>openstack-nova</provider>
<identity svns:secretAlias="cloud.controller.openstack.identity"></identity>
<credential svns:secretAlias="cloud.controller.openstack.credential"></credential>
<property name="jclouds.endpoint” value="http://192.168.16.20:5000/" />

<property name="jclouds.openstack-nova.auto-create-floating-ips" value="false" />
<property name="jclouds.api-version" value="2.0/" />
<scaleUpOrder>2</scaleUpOrder>
<scaleDownOrder>3</scaleDownOrder>
<property name="X" value="x" />
<property name="Y" value="y" />
<imageld>nova/dab37f0e-cf6f-4812-86fc-XXXXXXXXXXXX</imageld>
</iaasProvider>

</iaasProviders>

How does the architecture look like?

+| Message
Broker

Claud 0 '
Controller gan::‘dga Ds:mmr
Deployer eployer e

)

[laaS Implementation Layer

S
[jclouds

figure 3 - Cloud Controller Architecture

Above diagram depicts the high level architecture of the WSO2 Cloud Controller. WSO2 Cloud
Controller is a WSO2 Carbon based server and supports the features mentioned at “What is Cloud
Controller?” section of this document, through its number of architectural components. Those are
briefed as below.

Cloud Controller Service

The service interface is defined in the section “Service Interface of Cloud Controller”. This is the main

entry point for a Cloud Controller service consumer. Currently this is a SOAP API and we might
consider the possibility of providing a REST API, in a future Stratos 2 release.

Cloud Controller Deployer

This is an Axis2 deployer responsible for deploying/updating the “cloud-controller.xml” file defined in
the section_What are the configuration files used by Cloud Controller and where are they reside?.

https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.10ag794ycn7w
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.10ag794ycn7w
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.xq1p12f62yp6
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.vk3i07w5ho1g

Cartridge Deployer
This is an Axis2 deployer responsible for deploying/updating the cartridge definition files reside in
“${WSO2-CC}/repository/deployment/server/cartridges/” folder.

You should define the Cartridges that the system going to support, in Cloud Controller. This can be
done easily, by dropping a XML file which defines your Cartridge, into the
“${WSO02-CC}/repository/deployment/server/cartridges/” folder. You can do this either before

starting the server or while the server is running.

Cartridge XML file should have a unique file name and should adhere any of following two XML

schemas.

1. Cartridge schema - you can define only one Cartridge in a file.

2. Cartridges schema - you can define multiple Cartridges in a single file.

NOTE: There’s a limitation in XML 1.0 specification and hence, you need to respect the
sequential order of the elements of these configuration files. This limitation is rectified in
XML 1.1.

Sample Cartridge XML file (comments in the file explains each element):

<!-- You can have 1..n cartridge elements. -->
<cartridge type="php" host="php.slive.com" provider="php" version="5">
<!-- cartridge element can have 0..n properties, and they'll be overwritten by the
properties specified under iaasProvider child elements of cartridge element. -->
<property name="ss" value="slsls" />
<!-- Cartridge name -->
<displayName>PHP</displayName>
<!-- Cartridge description -->
<description>a php cartridge</description>
<!-- A cartridge element should add a reference to an existing IaaS provider (specified
in the above <iaasProviders> section) or it can create a completely new IaaS Provider (which
should have a unique "type" attribute. -->
<iaasProvider type="openstack" >
<imageld>nova/250cd0bb-96a3-4ce8-bec8-XXXXXXXXXX</imageld>
<property name="keyPair" value="demo" />
</iaasProvider>
<!-- This is required for the GIT repo creation. ‘baseDir’ attribute should point to a valid
path in the service instance, and it’s the place, where we will clone the GIT repo -->

<deployment baseDir="xyz">

https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.fr1zhccfxxn6
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.pw3bxudgh2gk

<!-- Following directories will be created in the newly created GIT repo. -->
<dir>abc</dir>
<dir>abcdef</dir>
</deployment>
<!-- Following element is required, if this is a non-carbon cartridge. -->
<portMapping>
<http port="80" proxyPort="8280"/>
<https port="443" proxyPort="8243"/>
</portMapping>
<!-- This element will be used to define application types of a cartridge that ca be given
a domain mapping. E.g. In WSO2 AppServer cartridge, app types are Axis2Services, Webapps,
JaxWebapps, and Jaggeryapps. -->
<appTypes>
<appType name="axis2services" />
<appType name="services" />
<appType name="webapps" appSpecificMapping="false" />
</appTypes>
</cartridge>

Service Deployer

This is an Axis2 deployer responsible for deploying/updating the service definition files reside in
{WSO02-CC}/repository/deployment/server/services/ folder.

For Carbon services, you should define the Services that the system going to support, in Cloud
Controller. But for non-carbon services, you don’t need to be concerned, since relevant services will

automatically get registered in Cloud Controller, at the time of your subscription to the Stratos-2.
This can be done easily, by dropping a XML file which defines the service configuration, into the
{WSO2-CC}/repository/deployment/server/services/ folder. You can do this either before starting

the server or while the server is running.

Service XML file should have a unique file name and should adhere any of following two XML

schemas.

1. Service schema - you can define only one Service in a file.

2. Services schema - you can define multiple Services in a single file.

https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.7ijxi0v29j8w
https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.8ok6jbiu6lie

NOTE: There’s a limitation in XML 1.0 specification and hence, you need to respect the sequential
order of the elements of these configuration files. This limitation is rectified in XML 1.1.

Sample Service XML file (comments in the file explains each element):

<service domain="nir" subDomain="mgt" tenantRange="*">
<!-- reference to the Cartridge -->
<cartridge type="php"/>
<!-- host name of this service instance -->
<host>nir.mgt</host>
<!-- path to the payload file -->
<payload>/wso2as-5.0.1-cloud-controller/resources/payload/nir-mgt.txt</payload>

</service>

Axiom Xpath Parser

Axiom Xpath based parser is responsible for parsing all kinds of *.xml configuration files of Cloud
Controller.

Topology Publisher

We keep the topology configuration in a central place - i.e. in Cloud Controller. What topology
configuration means here, is the information about the different service clusters of your Cloud
environment. As an example you might have an application service cluster and an ESB service cluster,

and the corresponding topology configuration might look like_this (in Nginx format).

But we can't survive by keeping this configuration only in Cloud Controller, because we need this
configuration for other places like ELB, Artifact Distribution Coordinator (ADC) etc. Hence, it is Cloud
Controller's duty to somehow sync this topology configuration it maintains, with others. Following image
depicts how that is done.

https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.ne5vycd39y0e

ADC

Cloud Controller —publishestopologyinfo—) topic = WS02 MB
subscribes to topology

WSO02 ELB

online diagramming & design] CreatelVy .com

e C(Cloud Controller keeps building the topology configuration (since, it can be changed
dynamically) and publishes it in a periodical manner (in addition to publishing upon a change) to
a topic created in WSO2 Message Broker (Also known as MB which is embedded into CC).
Note: here, we publish the whole configuration since that will make sure, a restart of a

subscriber of this topic won't have any issue in synching up.

e Anyone who needs this topology configuration can subscribe to the (relevant) topic and get

synced.

e Subscribers should ideally generate the difference of configuration (between what it received

and what it has) and act upon the diff (if there's any).

How does the topology get built?

As mentioned earlier, topology configuration can be changed dynamically (Added topology cannot be
removed (without restarting servers), but can update an existing one) and we need to

publish an up-to-date version to the topic.

service

Senice | . ==
Deployer | Topology Builder —l—‘ “
' i

service-topology.conf

< 4

New Configuration

[onkine diagramining & design] CreatE[yLum

We used producer-consumer pattern here. Cloud Controller's Service Deployer (producer) will track
the changes and put them into a shared blocking queue (which is shared with consumer). Topology
Builder (consumer) grab changes from the queue and add/update the topology configuration
(“${WSO02-CC}/repository/conf/service-topology.conf”) as shown in the above diagram.

BAM Data Publisher

We publish the information of the instances that are started up by the Cloud Controller to WSO2 BAM
server. BAM data publisher is intelligent enough to publish events related to 'a newly spawned instance'
or 'a state changed existing instance'.

Following screenshot shows a view of published data, from BAM’s Cassandra explorer.

NOTE: You need to configure BAM server URL in the
{WSO2-CC}/repository/conf/carbon.xml file, in addition to BAM data publisher configurations
in

{WSO02-CC}/repository/conf/cloud-controller.xml file.

(¢ | Home
Home > Manage > Cassandra Explorer > Connect to Cluster > Explore Cluster > org_wso2 stratos cloud controller22 > 1351507452572::192.168.1.3::9443::9
A
Dashboard Row : 1351507452572::192.168.1.3::9443::9
&) Dashboard
Gadgets & Show entries
5 View Portal
"EJ L Column Name Column Value Time Stamp
H Portal Permissions
s —
8, Gadget Reposiory Description Instances booted up by the Cloud Controller Sat Jul 26 14
o A Name org.wso2.stratos.cloud.controller22 Sat Jul 26 14
= Manage
o Nick_Name cloud.controller Sat Jul 26 14
= 7 Analytics
8 . Streamld org.wso2.stratos.cloud.controller22-1.0.0-7a958bbe-07f1-4bf4-8423- Sat)ul 26 14
R 2a60b16827be
. © Add Timestamp R Sat Jul 26 14
el < BAMToolbox :
o Version 1.0.0 Sat Jul 26 14
52 List
6 payload_cartridgeType php Sat Jul 26 14
Add
payload_domain nirmal Sat Jul 26 14
) Cassandra Keyspaces -
= payload_hostName ip-10-116-171-234 Sat Jul 26 14
6 Add payload_hypervisor Xen Sat Jul 26 14
{5 Cassandra Explorer payload_iaas ec2 SatJul26 14
@ Connect to Cluster payload_imageld us-east-1/ami-ef49e786 Sat Jul 26 14
Explore Cluster payload_is64bit0S true Sat Jul 26 14
(® Shutdown/Restart payload_loginPort 22 Sat Jul 26 14
Registry A payload_nodeld us-east-1/i-4df96031 Sat Jul 26 14
B Browse payload_osArch paravirtual Sat Jul 26 14
 Search payload_osVersion ***Non displayable value*** Sat Jul 26 14
payload_privatelPAddresses 10.116.171.234 Sat Jul 26 14
payload_publicIPAddresses 107.20.21.205 Sat Jul 26 14
payload_ram 7680 Sat Jul 26 14
payload_status RUNNING Sat Jul 26 14
payload_subDomain nirmal Sat Jul 26 14
Chowinn 1 tn 27 of 77 antriac

[aaS Implementation Layer
This layer contains the laaS implementations. All these implementations are extensions of Cloud

Controller’s laas abstract class. This class is added here and it resides in Cloud Controller’s
org.wso2.carbon.stratos.cloud.controller.interfaces package.

jclouds

This layer is the jclouds API. jclouds is an open source library that helps you get started in the cloud.
The jclouds API gives you the freedom to use portable abstractions or cloud-specific features.

Does Cloud Controller supports hot update and hot deployment of its configuration files?

https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.82xs1ip2yqob
http://www.google.com/url?q=http%3A%2F%2Fwww.jclouds.org%2F&sa=D&sntz=1&usg=AFQjCNHCZyWiOD0jkdwvGvfVAm-MFD5NxQ
http://www.google.com/url?q=http%3A%2F%2Fwww.jclouds.org%2F&sa=D&sntz=1&usg=AFQjCNHCZyWiOD0jkdwvGvfVAm-MFD5NxQ

Yes, and that makes Cloud Controller much easier to use. Let’s say you have updated a configuration
file (abc.xml) and it has some configuration issue. But, you don’t need to worry, we’ll let you know the
error and will back-up your configuration file by adding a suffix (.back) to the original file name
(abc.xml.back).

What [aaS providers you support by default?

We support AWS EC2 and Openstack IaaS providers by default. But theoretically we can provide
support for any IaaS that jclouds supports.

Can it support IaaS providers other than ones supported by Jclouds?

No, we only support [aaS providers which are/will support by jclouds.

How easy it is to provide support for a new IaaS provider?

You are few steps away, watch closely!

1. Your laaS provider implementation (say org.wso2.carbon.stratos.iaas.Vcloudlaas.java) should
extend the laas abstract class provided by Cloud Controller.

2. You should wrap the implementation in an OSGi bundle and it should be a fragment bundle of cloud
controller. You can do this via your bundle's pom file.

Add following line as a configuration instruction of maven bundle plugin:
<Fragment-Host>{symbolic-name-of-cloud-controller}</Fragment-Host>
{symbolic-name-of-cloud-controller} = org.wso2.carbon.stratos.cloud.controller

3. Also, it is pretty obvious that you need to add 'cloud-controller' component as a dependency in your
bundle’s pom file.

4. Next, you can drop the built bundle to {WSQO2-CC}/repository/components/dropins/.

5. Finally, in Cloud Controller's cloud-controller.xml, you need to define the IaasProvider you are
going to add and your implementation class.

https://docs.google.com/a/wso2.com/document/d/sac0E1aH05iIkGJhzUScBQQ/headless/print#heading=h.82xs1ip2yqob

eg:

<iaasProvider type="vcloud" name="vcloud specific details">
<className>org.wso2.carbon.stratos.iaas.Vcloudlaas</className>
<provider>vcloud</provider>
<identity svns:secretAlias="cloud.controller.vcloud.identity" />
<credential svns:secretAlias="cloud.controller.vcloud.credential" />
<scaleUpOrder>1</scaleUpOrder>
<scaleDownOrder>2</scaleDownOrder>
<property name="securityGroups" value="default" />
<property name="instanceType" value="m1.large" />
<property name="keyPair" value="abc-key" />
<imageld>us-east-1/ami-abcdef123</imageld>

</iaasProvider>

Now you can start using the newly added IaaS, in your Cartridge!

Cartridges

Single-Tenant cartridges

With single-tenant containers and frameworks, Stratos Cartridges provide process-level isolation and
instance-level dedicated tenancy. A tenant maps to one or more cartridge instances, and multiple tenants
are not hosted on a single cartridge instance (unlike multi-tenant shared containers where teams may
define multiple tenants per cartridge). Stratos load-balancing and security mechanisms partition tenants
based on network Uniform Resource Locator (URL) and hostname identifiers.

When single-tenant containers and frameworks are hosted within a Stratos Cartridge, teams configure
elastic scalability limits by specifying a pre-defined maximum process instance limit per tenant, and the
cartridge environment operates in a manner similar to application server clustering. When a cartridge
instance reservation is activated, the activation decreases the available resource pool for other tenants.

Multi-Tenant cartridges

Stratos Cartridges hosting WSO2 multi-tenant middleware services delivers multi-tenancy within each
cartridge instance. Within the cartridge instance, tenant traffic is securely directed to isolated

application code. Cartridge instance activations increase the available resource pool for all tenants
associated with the service partition. For more information on multi-tenant, shared container

technology, architecture, and benefits, refer [2].

WSO2 Stratos ships with pre-defined Stratos Cartridges for all multi-tenant WSO2 middleware
product and rapidly reduces the time required to create a Cloud environment. Stratos Cartridges host
multi-tenant WSO2 middleware platform servers and deliver integration services, SOA services,
application development services, governance services, identity services, presentation services, and

business process execution services.

Puppet based WSO2 Carbon Cartridges

The cartridges for WSO2 Carbon based products are configured using Puppet. For example, when
the Cloud Controller requests an instance with “AS” (Application Server) domain, a “Carbon base
cartridge” will be spawned and the Puppet will configure it for the AS specific configuration. If an
instance of BPS domain was requested, the same “Carbon base cartridge” will be spawned with BPS
configurations from Puppet.

Stratos2 WSO02 Carbon Cartridge

cC ELB AS Cartridge SC BPS Cartridge

Send topology
Ll

Look for services :

P spawn AS
|

spawn carbon instance with AS domain,
L

Request AS config from Puppet
Lad

Send AS config

4l
|

Cﬂﬁfig and boot D

Jointo SC

v

4 Jointo ELB

|

4, Spawn BPS
|

spawn carbon instance with BPS domain

[,
L

< Request BPS config from Puppet

Send BPS config "
Config and boot D
' Join to SC
u Join to ELB
CC ELB AS Cartridge SC BPS Cartridge

www.websequencediagrams.com

User Roles

Cartridge Developer

(e.g. In StratosLive case WSO2 PHP cartridge developers)
Creates image for different [aaS

Cartridge Deployer

(e.g. In StratosLive case WSO2 DevOps team)
Registers Cartridge with Stratos to create Stratos Cartridges

Cartridge Subscriber
(Eg. abc.com DevOps team/ Tenant admin)

Subscribes to the cartridge
- with other resource such as a persistent file system, a DB with scaling parameters
- Subscribe details will be kept in Stratos DB
- has the option of asking “create cartridge instance now” (vs. create on demand after apps
are loaded / first request comes in). *

- This is because there may be embedded applications in the image.

Upload applications to the cartridge

This step is optional step when subscribed with the create cartridge instance now option. When
first cartridge application is uploaded, Cartridge instance will be created if it is not already

created.

Cartridge Users
Eg. (Eg. abc.com tenant users)
- Use deployed apps
- Upload apps to cartridge(optional)

Strotos 2.0 Logical Architecture

Elastic Load
Balancer
4 Topology sync

5.Auto scale request

Cloud
Controller
3.5ubscribe

Strtos Controller

Artifact Deployment
Coodinator

2. Subscribe details

(GUI Cli client)

——8.JoinELB

6. Spawn instance

11.Pull request

< — 10.Trigger an event

1. List cartridges/
Subscribe

Tenant deploys App into Stratos

ADC

Push Arﬂfact.
Trigger an Event
-

Topology Lookup

<«

Depsync Clustering Me&sageh

Catridge
Agent

7.Join

me
laas Provider

Instance

12. Full

Code
Repository

9. Git push

Cartridge
Users

Cartridge Instance

»

Pull

ADC

Cartridge Instance

www.websequencediagrams.com

© 2013 WSO2

title: Tenant deploys App into Stratos

Tenant -> GitRepo: Push Artifact

GitRepo -> ADC : Trigger an Event

ADC -> ADC : Topology Lookup

ADC -> Cartridge Instance: DepSync Clustering Message

Cartridge Instance -> GitRepo: Pull

Cartridge Agent
Logging

Logging for Cartridges

CartridgeApp CartridgeLogFile CartridgeAgent

Log -

Notify change event >

Get the log change
events and send
the content to
BAM/Cassendra cluster
using thrift protocol >

CartridgeApp CartridgeLogFile CartridgeAgent

www.websequencediagrams.com

BAM

title Logging for Cartridges

CartridgeApp -> CartridgeLogFile: Log

© 2013 WSO2

CartridgeLogFile -> CartridgeAgent : Notify change event

CartridgeAgent -> BAM : Get the log change\n events and send \nthe content to \nBAM/Cassendra
cluster\n using thrift protocol

Health Monitoring

Stratos 2.0 health monitoring falls into two categories.
1) Service Level Health Monitoring
2) System Level Health Monitoring

Service Level Health Monitoring will periodically check the health of the services up and running in
Stratos. An operations team member with appropriate rights entitled by super admin can use this health
monitoring facility to monitor all stratos services. This component is not yet available for tenants to

check their own services health.

System level health monitoring will periodically check the cartridge instances for health status. An
operations team member with appropriate rights entitled by super admin can use system level health
monitoring facility to monitor all stratos cartridges. Also a cartridge subscriber can use system level
health monitoring to check the health status of his own cartridges.

Stratos 2.0 System Level Health Monitoring

Business Activity Monitor

Y

publish

Summarized data)

pu] Cassandra

Nagios XML engine R

Nagios Dashboard
WS02 BAM2

Monitoring server

ecks
Nagios Nagios Nagios Nagios) o
plugins plugins plugins plugins Virtual machine instances

Nagios
Nagios core (GNU GPL licensed) will be used to collect detailed resource/health status of instances.

Active and passive checks
Active checks are executed:
At regular intervals, On-demand as needed

Passive checks are used:
Asynchronous in nature and cannot be monitored effectively by polling their status on a
regularly scheduled basis

Status Publisher

StatusPublisher will be used to pull status information from nagios as XML and publish it in to BAM as

events.

© 2013 WSO2

© 2013 WSO2

Visualization
Collected status information will be analysed and visualized
1. as historical information over customizable periods
2. as states of monitoring [aaS instances, through alert and notifications

Note: Slight change in the architecture
without using Nagios XML engine; mk_livestatus http://mathias-kettner.de/checkmk _livestatus.html will
be used to pull data from the Nagios server.this change was made due to several latency, effcient

reasons with respect to Nagios XML engine.

User Stories

e A Cloud Administrator or User need to receive notifications for cloud resources life cycle

events in a timely manner so that he can respond to emergencies.

e A Cloud Administrator or User need to support on-going health status and notifications for

cloud resources that he is managing.

e As Cloud Administrator or User need to support, analyze; performance, resource usage,

resource consumption, etc.

e A Cloud Administrator or User want to configure policies to automatically address notifications

within his cloud infrastructure.

Custom Domain Mapping

User can add an own domain per cartridge using domain mapping functionality. At the time of
subscription tenant does not have to provide own domain information. After the subscription, he can
add the domain mapping through cli tool or GUI.

Say the tenant abc.coms own domain is, http://mysite.com,

Then she can register a domain mapping per cartridge,
mysite.com -> Cartridge alias (eg. abcphp)

http://www.google.com/url?q=http%3A%2F%2Fmathias-kettner.de%2Fcheckmk_livestatus.html&sa=D&sntz=1&usg=AFQjCNGhhLAkt2dW7s-KMb4P5iwakB3BVA
http://www.google.com/url?q=http%3A%2F%2Fmathias-kettner.de%2Fcheckmk_livestatus.html&sa=D&sntz=1&usg=AFQjCNGhhLAkt2dW7s-KMb4P5iwakB3BVA

After that he need to configure DNS with a CNAME record pointing the his domain to the published
WSO2 hostname(eg: php.slive.com).

Security for Cartridge Applications

Cartridge applications can be required to authenticated against a user store. We can use WSO?2 Identity
Server as it is already included in the WSO2 server list. It might require a sample for different types of
cartridge applications on how they can get the use of WSO?2 Identity Server.

Stratos 2.0

The topmost layer of Stratos2 consist of Stratos Services. These services run inside a cartridge. For
example we have ESB cartridge, AS cartridges, PHP Cartridges etc.

Usage Scenarios

Scenario 1: WSO2 Public PaaS

WSO2 PHP Cartridge Developer team, develop the PHP cartridge image. He may start from a base
image provided by a cloud operating system provider(Eg. Ubuntu UEC [1]), and install software
packages, for eg, PHP, Apache HTTP Server etc. Those software installation can be done by using set
of scripts (available at

STRATOS2 DOWNLOAD PACK/tools/cartridge create folder) provided by WSO2. After

creating the cartridge he will create php.xml cartridge configuration file.

WSO2 DevOps team register it with the WSO2 StratosLive environment. They will need to update
three configuration files.

1)<stratos deployment>/conf/stratos-controller.conf

2)<stratos deployment>/conf/cartridges/php/cartridge.conf

3)<stratos deployment>/deployment/server/php/stratos-controller.conf

abc.com wants to host abc.com php site in Stratos Live cloud. abc.com DevOps team subscribe to the
PHP carrtidge in Stratos Live cloud.

abc.com DevOps team upload the abc.com site PHP application into the cartridge. At the time of
deploying he has to mention some parameters like scaling parameters, min and max instance count,
resources such as FS or DB etc. When the application is uploaded a cartridge instance is created for
him.

Now abc.com users can access the abc.com site for their needs.

Scenario 2: Private PaaS

Now consider a scenario where abc.com is a Stratos customer who run their own private stratos cloud.
Also assume that they need to create their own cartridge(say MongoDB).

In this scenario they install Stratos cloud and follow the guidelines in Stratos2 Cartridge
Development Guide shipped along with this document, to create the cartridge.

Annex

Properties defined in the defaults section.

loadbalancer {
minimum number of load balancer instances
instances 1;
whether autoscaling should be enabled or not.
enable_autoscaler true;
#please use this whenever url-mapping is used through LB.
#size_of_cache 100;
autoscaling decision making task
autoscaler_task
org.wso2.carbon.mediator.autoscale.lbautoscale.task.ServiceRequestsinFlightAutoscaler;
End point reference of the Autoscaler Service
autoscaler_service_epr <autoscaler_service_epr>;
interval between two task executions in milliseconds
autoscaler_task_interval 30000;
after an instance booted up, task will wait maximum till this much of time and let the server started up
server_startup_delay 60000; #default will be 60000ms

session time out

session_timeout 90000;
enable fail over

fail_over true;

services' details which are fronted by this WSO2 Elastic Load Balancer
services {
default parameter values to be used in all services
defaults {
minimum number of service instances required. WSO2 ELB will make sure that this much of instances
are maintained in the system all the time, of course only when autoscaling is enabled.
min_app_instances 1;
maximum number of service instances that will be load balanced by this ELB.
max_app_instances 3;
max_requests_per_second 5;
rounds_to_average 2;
alarming_upper_rate 0.7;
alarming_lower_rate 0.2;
scale_down_factor 0.25;
message_expiry_time 60000;
}

appserver {
hosts appserver.cloud-test.wso2.com;
domains {

3.appserver.domain {

tenant_range *;
min_app_instances 0;
}

}

}

Properties defined within the service element

loadbalancer {

minimum number of load balancer instances

instances 1;

whether autoscaling should be enabled or not.

enable_autoscaler true;

#please use this whenever url-mapping is used through LB.

#size_of_cache 100;

autoscaling decision making task

autoscaler_task
org.wso2.carbon.mediator.autoscale.lbautoscale.task.ServiceRequestsinFlightAutoscaler;

End point reference of the Autoscaler Service

autoscaler_service_epr <autoscaler_service_epr>;

interval between two task executions in milliseconds

autoscaler_task_interval 30000;

after an instance booted up, task will wait maximum till this much of time and let the server started up

server_startup_delay 60000; #default will be 60000ms

session time out

session_timeout 90000;

enable fail over

fail_over true;

services' details which are fronted by this WSO2 Elastic Load Balancer
services {
default parameter values to be used in all services
defaults {
minimum number of service instances required. WSO2 ELB will make sure that this much of
instances
are maintained in the system all the time, of course only when autoscaling is enabled.
min_app_instances 1;
maximum number of service instances that will be load balanced by this ELB.
max_app_instances 3;
max_requests_per_second 5;
rounds_to_average 2;

alarming_upper_rate 0.7;

alarming_lower_rate 0.2;
scale_down_factor 0.25;

message_expiry_time 60000;

appserver {
hosts appserver.cloud-test.wso2.com;
domains {
3.appserver.domain {

tenant_range *,
min_app_instances 0;
max_requests_per_second 5;
alarming_upper_rate 0.6;

alarming_lower_rate 0.1;

{WSO02-CC}/repository/conf/etc/cartridge.xsd

<xs:element name="cartridge">
<xs:annotation>
<xs:documentation>You can have 1..n cartridge elements.</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="property" maxOccurs="unbounded"
minOccurs="0">

<xs:annotation>

<xs:documentation>
cartridge element can have 0..n properties, and
they'll be overwritten by the properties
specified under iaasProvider child elements of
cartridge element.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute type="xs:string" name="name" />
<xs:attribute type="xs:string" name="value" />
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="displayName" maxOccurs="1" minOccurs="0" />
<xs:element name="description" maxOccurs="1" minOccurs="0" />
<xs:element name="iaasProvider" maxOccurs="unbounded"
minOccurs="1">
<xs:annotation>
<xs:documentation>
A cartridge element should add a reference to an
existing laaS provider (specified in the above
&lt;iaasProviders&gt; section) or it can
create a completely new laaS Provider (which
should have a unique "type" attribute.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element type="xs:string" name="imageld"
minOccurs="0" maxOccurs="1" />
<xs:element name="property"
maxOccurs="unbounded" minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute type="xs:string"

name="name" />
<xs:attribute type="xs:string"
name="value" />
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:choice>
<xs:attribute type="xs:string" name="type" />
</xs:complexType>
</xs:element>
<xs:element name="deployment" maxOccurs="1" minOccurs="1">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="dir" maxOccurs="unbounded"
minOccurs="0" type="xs:string">
</xs:element>
</xs:choice>
<xs:attribute name="baseDir" type="xs:string">
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:element name="portMapping" maxOccurs="1"
minOccurs="0">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="http" maxOccurs="1"
minOccurs="1">
<xs:complexType>
<xs:attribute name="port"
type="xs:string" />
<xs:attribute name="proxyPort"
type="xs:string" />
</xs:complexType>
</xs:element>
<xs:element name="https" maxOccurs="1"
minOccurs="0">
<xs:complexType>

<xs:attribute name="port"

type="xs:string" />
<xs:attribute name="proxyPort"
type="xs:string" />
</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>
</xs:element>
<xs:element name="appTypes" maxOccurs="1"
minOccurs="1">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="appType" maxOccurs="unbounded"
minOccurs="1">
<xs:complexType>
<xs:attribute name="name" type="xs:string" use="required" />
<xs:attribute name="appSpecificMapping"
type="xs:string" />
</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>
</xs:element>
</xs:choice>
<xs:attribute type="xs:string" name="type" />
<xs:attribute type="xs:string" name="host" />
<xs:attribute type="xs:string" name="provider" />
<xs:attribute type="xs:string" name="version" />
<xs:attribute type="xs:boolean" name="multiTenant" />
</xs:complexType>

</xs:element>

{WSO02-CC}/repository/conf/etc/cartridges.xsd

<xs:element name="cartridges" >
<xs:annotation>
<xs:documentation>Use below section to specify properties that are needed in order to
Cartridges.</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:choice maxOccurs="unbounded">
<xs:element name="cartridge" maxOccurs="unbounded" minOccurs="1">
<xs:annotation>
<xs:documentation>You can have 1..n cartridge elements.</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="property" maxOccurs="unbounded"
minOccurs="0">
<xs:annotation>
<xs:documentation>
cartridge element can have 0..n properties,
and they'll be overwritten by the properties
specified under iaasProvider child elements
of cartridge element.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute type="xs:string"
name="name" />
<xs:attribute type="xs:string"
name="value" />
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="displayName" maxOccurs="1" minOccurs="0" />
<xs:element name="description" maxOccurs="1"
minOccurs="0" />

<xs:element name="iaasProvider" maxOccurs="unbounded"

start

minOccurs="1">
<xs:annotation>
<xs:documentation>
A cartridge element should add a reference
to an existing laaS provider (specified in
the above &lt;iaasProviders&gt;
section) or it can create a completely new
laa$S Provider (which should have a unique
"type" attribute.
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element type="xs:string" name="imageld"
minOccurs="0" maxOccurs="1" />
<xs:element name="property"
maxOccurs="unbounded" minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension
base="xs:string">
<xs:attribute
type="xs:string"
name="name" />
<xs:attribute
type="xs:string"
name="value" />
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:choice>
<xs:attribute type="xs:string" name="type" />
</xs:complexType>
</xs:element>
<xs:element name="deployment" maxOccurs="1">
<xs:complexType>
<xs:choice maxOccurs="unbounded">

<xs:element name="dir" maxOccurs="unbounded"

minOccurs="0" type="xs:string">
</xs:element>
</xs:choice>
<xs:attribute name="baseDir" type="xs:string">
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:element name="portMapping" maxOccurs="1"
minOccurs="0">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="http" maxOccurs="1"
minOccurs="1">
<xs:complexType>
<xs:attribute name="port"
type="xs:string" />
<xs:attribute name="proxyPort"
type="xs:string" />
</xs:complexType>
</xs:element>
<xs:element name="https" maxOccurs="1"
minOccurs="0">
<xs:complexType>
<xs:attribute name="port"
type="xs:string" />
<xs:attribute name="proxyPort"
type="xs:string" />
</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>
</xs:element>
<xs:element name="appTypes" maxOccurs="1"
minOccurs="1">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="appType" maxOccurs="unbounded"
minOccurs="1">

<xs:complexType>

<xs:attribute name="name" type="xs:string" use="required" />
<xs:attribute name="appSpecificMapping"
type="xs:string" />
</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>

</xs:element>
</xs:choice>
<xs:attribute type="xs:string" name="type"/>
<xs:attribute type="xs:string" name="host" />
<xs:attribute type="xs:string" name="provider" />
<xs:attribute type="xs:string" name="version" />
<xs:attribute type="xs:boolean" name="multiTenant" />
</xs:complexType>
</xs:element>
</xs:choice>
</xs:sequence>
</xs:complexType>

</xs:element>

{WSO02-CC}/repository/conf/etc/service.xsd

<xs:element name="service">
<xs:annotation>
<xs:documentation>you can have 0..n service elements</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element name="cartridge">
<xs:annotation>
<xs:documentation>
this element's value should be a reference
to an existing cartridge
</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute type="xs:string"
name="type" />
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>

<xs:element name="payload" type="xs:string' maxOccurs="1"
minOccurs="0"></xs:element>
<xs:element name="host" type="xs:string" maxOccurs="1"

minOccurs="0"></xs:element>

</xs:choice>

<xs:attribute type="xs:string" name="domain" />

<xs:attribute type="xs:string" name="tenantRange" />

<xs:attribute type="xs:string" name="subDomain" />

</xs:complexType>

</xs:element>

{WSO02-CC}/repository/conf/etc/services.xsd

<xs:element name="services">

<xs:annotation>

<xs:documentation>Here you specify the service domains related details.</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:choice maxOccurs="unbounded">

<xs:element name="service" maxOccurs="unbounded" minOccurs="1">

<xs:annotation>

<xs:documentation>you can have 0..n service elements</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:choice maxOccurs="unbounded">

<xs:element name="cartridge">

<xs:annotation>

<xs:documentation>this element's value should be a reference to an existing
cartridge</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute type="xs:string" name="type"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="payload" type="xs:string" maxOccurs="1" minOccurs="0"></xs:element>
<xs:element name="host" type="xs:string" maxOccurs="1" minOccurs="0"></xs:element>
</xs:choice>
<xs:attribute type="xs:string" name="domain"/>
<xs:attribute type="xs:string" name="subDomain"/>
<xs:attribute type="xs:string" name="tenantRange" />
</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>

</xs:element>

Sample Topology Configuration

services {
appserver {
domains {

asl.domain {
hosts mgt.as.slive.com;
sub_domain mgt;
tenant_range *,

}

asl.domain {
hosts as.slive.com;
sub_domain worker;

tenant_range *,

esb {
domains {

esb.domain {

http://www.google.com/url?q=http%3A%2F%2Fmgt.as.slive.com&sa=D&sntz=1&usg=AFQjCNFv3M0YnxPkgssylouNEt4UkG06dg
http://www.google.com/url?q=http%3A%2F%2Fas.slive.com&sa=D&sntz=1&usg=AFQjCNG1BYaek6lpSzFJSkrVh5YtBaHhIA

hosts mgt.esb.slive.com;

tenant_range *,

Iaas Abstract Class

* All IaaSes that are going to support by Cloud Controller, should extend this abstract class.

public abstract class laas {

/**

* This should build the {@link ComputeService} object and the {@link Template} object,
* using the information from {@link IaasProvider} and should set the built

* {@link ComputeService} object in the {@link

IaasProvider#setComputeService(ComputeService)}

* and also should set the built {@link Template} object in the
* {@link IaasProvider#setTemplate(Template)}.
* @param iaasInfo corresponding {@link IaasProvider}

*/

public abstract void buildComputeServiceAndTemplate(laasProvider iaasInfo);

/**

* This method provides a way to set payload that can be obtained from {@link

IaasProvider#getPayload()}

* in the {@link Template} of this IaaS.
* @param iaasInfo corresponding {@link IaasProvider}
*/

public abstract void setDynamicPayload(laasProvider iaasInfo);

/**

* This will obtain an IP address from the allocated list and associate that IP with this node.
* @param iaasInfo corresponding {@link IaasProvider}

* @param node Node to be associated with an IP.

* @return associated public IP.

*/

public abstract String associateAddress(laasProvider iaasInfo, NodeMetadata node);

/**

http://www.google.com/url?q=http%3A%2F%2Fmgt.esb.slive.com&sa=D&sntz=1&usg=AFQjCNFwEKawalt_mBD7VSruGVeJavezSQ

* This method should create a Key Pair corresponds to a given public key in the respective
region having the name given.

* Also should override the value of the key pair in the {@link Template} of this IaaS.

* @param iaasInfo {@link IaasProvider}

* @param region region that the key pair will get created.

* @param keyPairName name of the key pair. NOTE: Jclouds adds a prefix :
<code>jclouds#</code>

* @param publicKey public key, from which the key pair will be created.

* @return whether the key pair creation is successful or not.

*/

public abstract boolean createKeyPairFromPublicKey(laasProvider iaasInfo, String region, String keyPairName,

String publicKey);

}

References

[1]http://uec-images.ubuntu.com/releases/precise/release-20120424/

[2]http://wso2.com/whitepapers/cloud-native-advantage-multi-tenant-shared-container-paas/

http://www.google.com/url?q=http%3A%2F%2Fuec-images.ubuntu.com%2Freleases%2Fprecise%2Frelease-20120424%2F&sa=D&sntz=1&usg=AFQjCNEbj_TUdGa_sZNTNJ0OiqDOqoi7QA
http://www.google.com/url?q=http%3A%2F%2Fwso2.com%2Fwhitepapers%2Fcloud-native-advantage-multi-tenant-shared-container-paas%2F&sa=D&sntz=1&usg=AFQjCNEKqWXMoAjzwvhxWj22GeRpWEAAxA

